Definisi
Salah satu definisi menyebutkan bahwa statistik adalah metode ilmiah untuk menyusun, meringkas, menyajikan dan menganalisa data, sehingga dapat ditarik suatu kesimpulan yang benar dan dapat dibuat keputusan yang masuk akal berdasarkan data tersebut. Jika suatu kesimpulan data sudah dihimpun, pada statistika deskriptif kita hendak menyimpulkan data itu dalam beberapa hal. Pertama kita hendak membuat tabel, misalnya tabel frekuensi, tabel frekuensi kumulatif dan lain-lain yang mengatur data kasar itu. Juga kita akan melihat diagram atau grafik yang dapat memberi gambaran mengenai keseluruhan data itu, misalnya diagram lambang (piktogram), diagram batang, diagram lingkaran, histogram, ogive dan lain-lain. Kemudian kita hendak menghitung karakteristik data yang dapat mencakup semua data itu, misalnya rata-rata, median, modus dan lain-lain.
HISTOGRAM dan POLIGON FREKUENSI
adalah dua grafik yang menggambarkan distribusi frekuensi.
HISTOGRAM terdiri dari persegi panjang yang alasnya merupakan panjang kelas interval, sedangkan tingginya sama dengan frekuensi masing-masing kelas interval.
POLIGON FREKUENSI adalah suatu garis putus putus yang menghubungkan titik tengah ujung batang histogram. Biasanya ditambah dua segmen garis lain yang menghubungkan titik tengah ujung batang pertama dan terakhir dengan titik tengah kelas yang paling ujung dimana frekuensinya bernilai nol.
Contoh:
Buatlah histogram clan poligon frekuensi dari distribusi frekuensi di bawah ini.
| |
DISTRIBUSI FREKUENSI KOMULATIF
Distribusi frekuensi kumulatif dapat digambarkan oleh suaatu grafik yang disebut Poligon Frekuensi Kumulatif atau OGIVE, yang melukiskan frekuensi kumulatip terhadap batas atas kelas.
Contoh:
Ukuran Pemusatan Untuk Data Yang Tidak Digolongkan | |
Untuk sekelompok data yang diperoleh, yaitu x1, x2, x3, . . . . . . , x maka dapat ditentukan:
- RATA-RATA (MEAN) (notasi: x dibaca : x bar)
_
x = (x1+x2+.....+xn)/n = å xi / n = å (fi.xi) / n dimana åfi = n
~ - MEDIAN (notasi: x )
Adalah nilai tengah dari data yang telah diurutkan menurut besarnya.
Dengan ketentuan:
Jika banyak data ganjil, maka median adalah nilai tengah dari data yang telah diurutkan.
(Data ke (n+1)/2 )
^ - MODUS (notasi : x)
Adalah nilai data yang sering muncul (mempunyai frekuensi terbesar). Modus dapat ada ataupun tidak ada. Kalaupun ada dapat lebih dari satu.
Contoh:
Diketahui data
7, 9, 8, 13, 12, 9, 6, 5 n = 8
7, 9, 8, 13, 12, 9, 6, 5 n = 8
- Rata-rata
_
x = (5+6+7+8+9+9+12+13)/8 = 8,625
- Median
Data diurutkan terlebih dahulu menjadi
5 6 7 8 9 9 12 13
~
x = (8+9)/2 = 8,5
- Modus
^
x = 9
Ukuran Penyebaran
JANGKAUAN (RANGE) Notasi: J
Untuk data yang tidak dikelompokkan, jangkauan adalah selisih antara nilai terbesar dan nilai terkecil. Untuk data yang dikelompokkan, jangkauan adalah selisih antara titik tengah kelas tertinggi dengan titik tengah kelas terendah.
KUARTIL Notasi: q
Kuartil membagi data (n) yang berurutan atas 4 bagian yang sama banyak.
------|------|-------|-------
Q1 Q2 Q3
Q1 Q2 Q3
Q1 = kuartil bawah (1/4n )
Q2 = kuartil tengah/median (1/2n)
Q3 = kuartil atas (1/4n )
Q2 = kuartil tengah/median (1/2n)
Q3 = kuartil atas (1/4n )
Untuk data yang tidak dikelompokkan terlebih dahulu dicari mediannya, kemudian kuartil bawah dan kuartil atas.
Untuk data yang dikelompokkan rumusan kuartil identik dengan rumusan mencari median.
Q1 = L1 + [(1/4n - (å f)1)/fQ1] . c
Q3 = L3 + [(3/4n - (å f)3)/fQ3] . c
DESIL Notasi: D
Desil membagi data (n) yang berurutan atas 10 bagian yang sama besar. (D,, D2, D3, . . . . . . , D9)
Di = Li + ((i/10)n - (å f)i)/fi . c
PERSENTIL Notasi: P
Persentil membagi data (n) yang berurutan atas 100 bagian yang sama besar. (P1, P2, P3, . . . . . . ,P99)
Pi = Li +( i/100 n - (åf)i)/fi . c
Cara mencari Desil dan Persentil identik dengan cara mencari kuartil.
SIMPANGAN
SIMPANGAN KUARTIL Notasi: Qd
(JANGKAUAN SEMI INTERKUARTIL)
(JANGKAUAN SEMI INTERKUARTIL)
Qd = (Q3 - Q1) / 2
SIMPANGAN BAKU Notasi: S
(STANDAR DEVIASI)
(STANDAR DEVIASI)
S = Ö((åfi(xi-x bar)²)/n)
atau CARA CODING
___________________
S = Ö (å fidi² / n) - (fidi/n)²
__________________
= c Ö (å fiui² / n) - (fiui/n)²
RAGAM (VARIANSI) Notasi: S²
KOEFISIEN KERAGAMAN V = S / x bar . 100%
Contoh:
1. Data tidak dikelompokkan
Diketahui data
Diketahui data
95, 84, 86, 90, 93, 88, 97, 98, 89, 94
Data diurutkan terlebih dahulu, menjadi:
84 86 818 89 90 93 94 915 97 98
84 86 818 89 90 93 94 915 97 98
Q1 = 88 ; Q2 = 90 93 ; Q3 = 95
a. Jangkauan J = 98 - 84 = 14
b. Kuartil Q1=88 ; Q2 = (90+93)/2 = 91,5 ; Q3 = 95
Simpangan kuartil = Qd = (95 - 88) / 2 = 3,5
c. Rata-Rata
= (88+86+88+89+90+93+95+97+98)/10 = 91,4
Simpangan baku = Ö(((84-91,4)² + ...... + (98-91,4)²)/10) = 4,72
b. Kuartil Q1=88 ; Q2 = (90+93)/2 = 91,5 ; Q3 = 95
Simpangan kuartil = Qd = (95 - 88) / 2 = 3,5
c. Rata-Rata
= (88+86+88+89+90+93+95+97+98)/10 = 91,4
Simpangan baku = Ö(((84-91,4)² + ...... + (98-91,4)²)/10) = 4,72
2. Data dikelompokkan
Skor | Titik Tengah | Frekuensi |
50-54 | 52 | 4 |
55-59 | 57 | 6 |
60-64 | 62 | 8 |
65-69 | 67 | 16 |
70-74 | 72 | 10 |
75-79 | 77 | 3 |
80-84 | 82 | 2 |
85-89 | 87 | 1 |
| | n = 50 |
a. Jangkauan = Titik tengah kelas tertinggi - Titik tengah kelas terendah = 87-52 =35
b. Kuartil bawah (¼n )
Q1 = 59,5 + ((12,5 - 10)/8 . (5)) = 61,06
Kuartil bawah (¾n )
Q3 = 69,5 + (37,5 - 34)/10 . 5 = 71,25
Simpangan Kuartil
Qd = (Q3 - Q1) / 2 = (71,25 - 61,06) / 2 = 5,09
Q1 = 59,5 + ((12,5 - 10)/8 . (5)) = 61,06
Kuartil bawah (¾n )
Q3 = 69,5 + (37,5 - 34)/10 . 5 = 71,25
Simpangan Kuartil
Qd = (Q3 - Q1) / 2 = (71,25 - 61,06) / 2 = 5,09
c. Rata-rata
_
x = ((4)(52) + (6)(57) + ... + (1)(870) / 50 = 66,4
_
x = ((4)(52) + (6)(57) + ... + (1)(870) / 50 = 66,4
d. Simpangan Baku
___________________________________
Ö((52-66,4)² + ...... + (87-66,4)²)/50 = 7,58
___________________________________
Ö((52-66,4)² + ...... + (87-66,4)²)/50 = 7,58
CATATAN:
- Bila pada suatu kumpulan data, setiap data ditambah / dikurangi dengan suatu bilangan, maka:
- nilai statistik yang berubah: Rata-rata, Median, Modus, Kuartil.
- nilai statistik yang tetap : J angkauan, Simpangan Kuartil, Simpangan baku. - Bila pada suatu kumpulan data, setiapp data dikali ldibagi dengan suatu bilangan, maka: semua nilai statistiknya berubah.
Tidak ada komentar:
Posting Komentar